3 research outputs found

    On the Activity Privacy of Blockchain for IoT

    Full text link
    Security is one of the fundamental challenges in the Internet of Things (IoT) due to the heterogeneity and resource constraints of the IoT devices. Device classification methods are employed to enhance the security of IoT by detecting unregistered devices or traffic patterns. In recent years, blockchain has received tremendous attention as a distributed trustless platform to enhance the security of IoT. Conventional device identification methods are not directly applicable in blockchain-based IoT as network layer packets are not stored in the blockchain. Moreover, the transactions are broadcast and thus have no destination IP address and contain a public key as the user identity, and are stored permanently in blockchain which can be read by any entity in the network. We show that device identification in blockchain introduces privacy risks as the malicious nodes can identify users' activity pattern by analyzing the temporal pattern of their transactions in the blockchain. We study the likelihood of classifying IoT devices by analyzing their information stored in the blockchain, which to the best of our knowledge, is the first work of its kind. We use a smart home as a representative IoT scenario. First, a blockchain is populated according to a real-world smart home traffic dataset. We then apply machine learning algorithms on the data stored in the blockchain to analyze the success rate of device classification, modeling both an informed and a blind attacker. Our results demonstrate success rates over 90\% in classifying devices. We propose three timestamp obfuscation methods, namely combining multiple packets into a single transaction, merging ledgers of multiple devices, and randomly delaying transactions, to reduce the success rate in classifying devices. The proposed timestamp obfuscation methods can reduce the classification success rates to as low as 20%

    On the activity privacy of blockchain for IoT

    No full text
    Blockchain has received tremendous attention as a distributed platform to enhance the security of Internet of Things (IoT). The history of communications is stored in blockchain which introduces auditability. On the flip side, new privacy risks are introduced as the entire history of IoT device communication is exposed to participants. We study the likelihood of classifying IoT devices by analyzing the temporal patterns of their transactions, which to the best of our knowledge, is the first work of its kind. We apply machine learning algorithms on blockchain data to analyze the success rate of device classification. Our results demonstrate success rates over 90% in classifying devices. We propose three timestamp obfuscation methods, namely combining multiple packets into a single transaction, merging ledgers of multiple devices, and randomly delaying transactions, to reduce the success rate in classifying devices which reduce the classification success rates to as low as 24%.</p

    Device Identification in Blockchain-Based Internet of Things

    No full text
    In recent years blockchain technology has received tremendous attention. Blockchain users are known by a changeable Public Key (PK) that introduces a level of anonymity, however, studies have shown that anonymized transactions can be linked to deanonymize the users. Most of the existing studies on user de-anonymization focus on monetary applications, however, blockchain has received extensive attention in non-monetary applications like IoT. In this paper we study the impact of de-anonymization on IoT-based blockchain. We populate a blockchain with data of smart home devices and then apply machine learning algorithms in an attempt to classify transactions to a particular device that in turn risks the privacy of the users. Two types of attack models are defined: (i) informed attacks: where attackers know the type of devices installed in a smart home, and (ii) blind attacks: where attackers do not have this information. We show that machine learning algorithms can successful classify the transactions with 90% accuracy. To enhance the anonymity of the users, we introduce multiple obfuscation methods which include combining multiple packets into a transaction, merging ledgers of multiple devices, and delaying transactions. The implementation results show that these obfuscation methods significantly reduce the attack success rates to 20% to 30% and thus enhance the user privacy.</p
    corecore